Aliases: C32⋊6C4≀C2, D4⋊2(C32⋊C4), (D4×C32)⋊2C4, C32⋊4Q8⋊1C4, C3⋊Dic3.52D4, C2.7(C62⋊C4), C12.D6.1C2, C32⋊M4(2)⋊2C2, (C4×C32⋊C4)⋊1C2, C4.2(C2×C32⋊C4), (C3×C12).2(C2×C4), (C2×C3⋊S3).14D4, (C4×C3⋊S3).6C22, (C3×C6).17(C22⋊C4), SmallGroup(288,431)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C4×C3⋊S3 — C32⋊M4(2) — C32⋊6C4≀C2 |
Generators and relations for C32⋊6C4≀C2
G = < a,b,c,d,e | a3=b3=c4=d2=e4=1, ebe-1=ab=ba, ac=ca, ad=da, eae-1=a-1b, bc=cb, bd=db, dcd=c-1, ce=ec, ede-1=c-1d >
Subgroups: 456 in 84 conjugacy classes, 16 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2×C4, D4, D4, Q8, C32, Dic3, C12, D6, C2×C6, C42, M4(2), C4○D4, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C4≀C2, C3⋊Dic3, C3⋊Dic3, C3×C12, C32⋊C4, C2×C3⋊S3, C62, D4⋊2S3, C32⋊2C8, C32⋊4Q8, C4×C3⋊S3, C2×C3⋊Dic3, C32⋊7D4, D4×C32, C2×C32⋊C4, C32⋊M4(2), C4×C32⋊C4, C12.D6, C32⋊6C4≀C2
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, C4≀C2, C32⋊C4, C2×C32⋊C4, C62⋊C4, C32⋊6C4≀C2
Character table of C32⋊6C4≀C2
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 12A | 12B | |
size | 1 | 1 | 4 | 18 | 4 | 4 | 2 | 9 | 9 | 18 | 18 | 18 | 18 | 36 | 4 | 4 | 8 | 8 | 8 | 8 | 36 | 36 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | i | -i | i | -1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | i | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | i | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | i | -i | i | -i | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | i | -i | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | -i | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | -2 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 2i | -2i | -1-i | 1-i | 1+i | -1+i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 2i | -2i | 1+i | -1+i | -1-i | 1-i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -2i | 2i | 1-i | -1-i | -1+i | 1+i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ14 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -2i | 2i | -1+i | 1+i | 1-i | -1-i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ15 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 3 | 0 | -3 | 0 | 0 | 0 | -1 | 2 | orthogonal lifted from C62⋊C4 |
ρ16 | 4 | 4 | -4 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -1 | 2 | -1 | 2 | 0 | 0 | 1 | -2 | orthogonal lifted from C2×C32⋊C4 |
ρ17 | 4 | 4 | -4 | 0 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 2 | -1 | 2 | -1 | 0 | 0 | -2 | 1 | orthogonal lifted from C2×C32⋊C4 |
ρ18 | 4 | 4 | 4 | 0 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | -2 | 1 | 0 | 0 | -2 | 1 | orthogonal lifted from C32⋊C4 |
ρ19 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | -3 | 0 | 3 | 0 | 0 | 2 | -1 | orthogonal lifted from C62⋊C4 |
ρ20 | 4 | 4 | 4 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -2 | 1 | -2 | 0 | 0 | 1 | -2 | orthogonal lifted from C32⋊C4 |
ρ21 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -3 | 0 | 3 | 0 | 0 | 0 | -1 | 2 | orthogonal lifted from C62⋊C4 |
ρ22 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 3 | 0 | -3 | 0 | 0 | 2 | -1 | orthogonal lifted from C62⋊C4 |
ρ23 | 8 | -8 | 0 | 0 | 2 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ24 | 8 | -8 | 0 | 0 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(5 10 47)(6 11 48)(7 12 45)(8 9 46)(33 37 42)(34 38 43)(35 39 44)(36 40 41)
(1 14 19)(2 15 20)(3 16 17)(4 13 18)(5 10 47)(6 11 48)(7 12 45)(8 9 46)(21 27 32)(22 28 29)(23 25 30)(24 26 31)(33 37 42)(34 38 43)(35 39 44)(36 40 41)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 21)(2 24)(3 23)(4 22)(5 39)(6 38)(7 37)(8 40)(9 41)(10 44)(11 43)(12 42)(13 28)(14 27)(15 26)(16 25)(17 30)(18 29)(19 32)(20 31)(33 45)(34 48)(35 47)(36 46)
(1 48 3 46)(2 45 4 47)(5 20 12 13)(6 17 9 14)(7 18 10 15)(8 19 11 16)(21 33)(22 34)(23 35)(24 36)(25 39 30 44)(26 40 31 41)(27 37 32 42)(28 38 29 43)
G:=sub<Sym(48)| (5,10,47)(6,11,48)(7,12,45)(8,9,46)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,47)(6,11,48)(7,12,45)(8,9,46)(21,27,32)(22,28,29)(23,25,30)(24,26,31)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,21)(2,24)(3,23)(4,22)(5,39)(6,38)(7,37)(8,40)(9,41)(10,44)(11,43)(12,42)(13,28)(14,27)(15,26)(16,25)(17,30)(18,29)(19,32)(20,31)(33,45)(34,48)(35,47)(36,46), (1,48,3,46)(2,45,4,47)(5,20,12,13)(6,17,9,14)(7,18,10,15)(8,19,11,16)(21,33)(22,34)(23,35)(24,36)(25,39,30,44)(26,40,31,41)(27,37,32,42)(28,38,29,43)>;
G:=Group( (5,10,47)(6,11,48)(7,12,45)(8,9,46)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,47)(6,11,48)(7,12,45)(8,9,46)(21,27,32)(22,28,29)(23,25,30)(24,26,31)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,21)(2,24)(3,23)(4,22)(5,39)(6,38)(7,37)(8,40)(9,41)(10,44)(11,43)(12,42)(13,28)(14,27)(15,26)(16,25)(17,30)(18,29)(19,32)(20,31)(33,45)(34,48)(35,47)(36,46), (1,48,3,46)(2,45,4,47)(5,20,12,13)(6,17,9,14)(7,18,10,15)(8,19,11,16)(21,33)(22,34)(23,35)(24,36)(25,39,30,44)(26,40,31,41)(27,37,32,42)(28,38,29,43) );
G=PermutationGroup([[(5,10,47),(6,11,48),(7,12,45),(8,9,46),(33,37,42),(34,38,43),(35,39,44),(36,40,41)], [(1,14,19),(2,15,20),(3,16,17),(4,13,18),(5,10,47),(6,11,48),(7,12,45),(8,9,46),(21,27,32),(22,28,29),(23,25,30),(24,26,31),(33,37,42),(34,38,43),(35,39,44),(36,40,41)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,21),(2,24),(3,23),(4,22),(5,39),(6,38),(7,37),(8,40),(9,41),(10,44),(11,43),(12,42),(13,28),(14,27),(15,26),(16,25),(17,30),(18,29),(19,32),(20,31),(33,45),(34,48),(35,47),(36,46)], [(1,48,3,46),(2,45,4,47),(5,20,12,13),(6,17,9,14),(7,18,10,15),(8,19,11,16),(21,33),(22,34),(23,35),(24,36),(25,39,30,44),(26,40,31,41),(27,37,32,42),(28,38,29,43)]])
Matrix representation of C32⋊6C4≀C2 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 1 | 0 |
27 | 0 | 0 | 0 | 0 | 0 |
46 | 46 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
27 | 54 | 0 | 0 | 0 | 0 |
46 | 46 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
46 | 0 | 0 | 0 | 0 | 0 |
14 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[27,46,0,0,0,0,0,46,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[27,46,0,0,0,0,54,46,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[46,14,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,1,0,0,0,0,0,0,1,0,0] >;
C32⋊6C4≀C2 in GAP, Magma, Sage, TeX
C_3^2\rtimes_6C_4\wr C_2
% in TeX
G:=Group("C3^2:6C4wrC2");
// GroupNames label
G:=SmallGroup(288,431);
// by ID
G=gap.SmallGroup(288,431);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,100,675,346,80,9413,691,12550,2372]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^4=d^2=e^4=1,e*b*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1*b,b*c=c*b,b*d=d*b,d*c*d=c^-1,c*e=e*c,e*d*e^-1=c^-1*d>;
// generators/relations
Export